Showing posts with label GLAMhack2020. Show all posts
Showing posts with label GLAMhack2020. Show all posts

Jun 5, 2020

DATASET: Text Analysis Challenge - Detect Looted Art - GLAMhack2020



Download  Provenance Texts Dataset: CSV 

Text Analysis Challenge: Detect Looted Art.

Help Automate Analysis, Flagging and Ranking of Museum Art Provenance Texts by the Probability of a Hidden History

The Question: How to sift through the millions of objects in museums to identify top priorities for intensive research by humans? 

The Goal: Automatically Classify and Rank 60,000+ art provenance texts by probability that further research will turn up a deliberately concealed history of looting, forced sale, theft or forgery. 

The Challenge: Analyse texts quickly for Red Flags, quantify, detect patterns, classify, rank, and learn. Whatever it takes to produce a reliable list of top suspects

For this challenge several datasets will be provided.

1) DATASET: 60,000+ art provenance texts for analysis

(example)
https://www.harvardartmuseums.org/collections/object/296887[Pierre Matisse Gallery, New York, New York], by 1932, to M. Gutmann, 1936. Maurice Wertheim, by 1937, bequest, to Fogg Art Museum, 1951.;NOTE: Provenance derived from "Degas to Matisse: The Maurice Wertheim Collection," John O'Brian, Harry N. Abrams, New York, 1988.1951.76
https://www.harvardartmuseums.org/collections/object/229045Private Collector, Paris, Said to have been bought directly from artist, 1918.;Maurice Wertheim, Purchased from the Valentine Gallery, 1937, Bequest to Fogg Art Museum, 1951.1951.52
https://www.harvardartmuseums.org/collections/object/229044Paul Guillaume, Paris, France, 1925, 1935. By 1930, per caption of photo, Paul Guillaume dining room dated c. 1930, Georgel 2006;Maurice Wertheim, 1937, Bequest to Fogg Art Museum, 1951.1951.51
https://www.harvardartmuseums.org/collections/object/229043Unidentified owner, Paris, sold, [through Hôtel Drouot, Paris, June 16, 1906, no 30.]. Dr. Alfred Wolff, Munich, (1912). Sir Michael Sadler, England, (1912). [De Hauke & Co., New York], sold, to A. Conger Goodyear, New York, (1929-1937) sold, [through Wildenstein && Co., New York];to Maurice Wertheim, New York (1937-1951) bequest, to Fogg Art Museum, 1951.1951.49

2) DATASET: 1000 Red Flag Names

(example)

Bignou, EtienneBignouEtienneEtienne Bignou
Billiet, DirectorBillietDirectorDirector Billiet
Binder, Dr. Moritz JuliusBinderDr. Moritz JuliusDr. Moritz Julius Binder
Bing CollectionBing CollectionBing Collection
Birtschansky, ZacharieBirtschanskyZacharieZacharie Birtschansky
Bisson, E.BissonE.E. Bisson
Blanc, PierreBlancPierrePierre Blanc
Bleye, WilliBleyeWilliWilli Bleye
Bloch, Dr. VitaleBlochDr. VitaleDr. Vitale Bloch
Bloch-Bauer Collection
Bloch-Bauer Collection
Bloch-Bauer Collection
BlotBlotBlot
Bode, Dr.BodeDr.Dr. Bode
Bodenschatz, General KarlBodenschatzGeneral KarlGeneral Karl Bodenschatz
Boedecker, AlfredBoedeckerAlfredAlfred Boedecker
Boehler, Julius, Jr.BoehlerJuliusJulius Boehler
Boehler, Julius, Sr.BoehlerJuliusJulius Boehler
Boehm, Dr. FranzBoehmDr. FranzDr. Franz Boehm
Boehmer, BernhardBoehmerBernhardBernhard Boehmer

3) DATESET:  Red Flag Words or Phrases

(example)
flaguncertaintyflaganonymityflagpuncutationflagmoveflagreliability
likelyprivate collector?transfertelephone
probablyanonymous[removedto at least
possiblyart marketuntil at least
maybeunidentifiedby 19
?unknownbefore 19
property of a European collectoraccording to
private collection
property of a lady
anon. 


You're the doctor and the texts are your patients! Who's in good health and who's sick? How sick? With what disease? What kind of tests and measurements can we perform on the texts to help us to reach a diagnosis? What kind of markers for should we look for? What kind of patterns? 

What digital methods can we use - and put into practice during the Hackathon - to "diagnose" these texts and prioritize them for "treatment" (ie, additional provenance research)?


  • IDENTIFY Red Flag Names and Words in each Text?
  • COUNT Red Flag Names and Words in each Text?
  • CHARACTERIZE each Text (number of words? sentiment? completeness v gaps? other features to be identified that may be useful)?
  • ANALYZE for patterns, links and networks?
  • CALCULATE probability that the provenance conceals a Nazi-era history that will prove problematic if investigated in detail
  • RANK according to urgency for further in-depth provenance research 


(Voyant-Tools Whitelist containing names: 
keywords-14ca7131716f24c62c6529fcc143bbd2  )


What might a successful result look like?




  • A list of 50 provenances from the DATASET ranked most likely to conceal looted art
  • A color-coded evaluation of each provenance (RED, ORANGE, GREEN) by likelihood of concealing looted art
  • Instructions how to analyze the provenances with the tools, functions or code to use  (for example, how to use Voyant-Tools to count all the Red Flag Names and inject the result back into the spreadsheet)
  • Ideas for going further....


Triage: "assignment of degrees of urgency to wounds or illnesses to decide the order of treatment of a large number of patients or casualties."

Link to Glamhack2020 project for participants
https://hack.glam.opendata.ch/project/7



Help us to test and improve and test and improve the code!

Link to Code on Github 

https://github.com/parisdata/GLAMhack2020

Issues to resolve:
- While the word list counts and general name extraction seem to work pretty well, reconciliation with the list of 1000 Red Flag Names still needs work. To test: A tighter tolerance combined with a more complete listing of alias might help.
- The extraction of transaction years after 1900 gives interesting though incomplete indicators. The decision to exclude dates in parentheses (as they are sometimes biographical dates and not transaction dates) needs to be reviewed and refined. 
(note: The texts are from multiple sources applying multiple formats and deliberately entered exactly as is)